改善精密机床伺服系统低速性能的研究
图1 数控机床交流伺服系统结构图 以TI公司的DSP—TMS320F240为控制核心,主要完成电流环、速度环,2/3坐标变换、PWM生成及检测环节的计算和整个系统的协调工作。主回路采用了IPM智能功率模块,受控对象为永磁同步电动机,其额定转速为2000r/min,速度检测采用每转产生2000脉冲的光电脉冲编码器。 影响数控机床伺服系统低速性能的原因 定子电流及齿槽效应的影响 速度波动是衡量伺服系统低速特性一项重要技术指标。该性能指标用转速不均匀度来表示,如式(1):
Δω为转速波动,ω为实际转速,Nmax为稳态运行时瞬时最大转速,Nmin为稳态运行时最小转速。转速扰动是由转矩扰动引起的。在实际工作过程中,伺服系统的转矩Te不是恒定不变的,在中高速情况下转矩扰动对系统的运行特性的影响可以忽略不计。但对于要求在低速下能够平稳运行的高精度伺服系统而言影响很大。这是因为在低速,特别是在空载情况下,加在电机定子绕组上的控制信号十分微小,扰动信号大小可以与控制信号相比较,甚至超过正常的控制信号,伺服系统输出的角速度将在扰动力矩作用下产生波动,破坏低速运行的平稳性。永磁同步电动机(PMSM)伺服系统中引起转速扰动的因素是多方面的。 ·定子电流的影响 为了产生恒定的转矩,PMSM的反电动势和由逆变器输入定子的相电流都必须是正弦的。然而受外界因素的综合影响,PMSM三相定子电流并不是正弦,而是引入了一个干扰量ΔI,如式(2)所示。
ΔI的产生是由多方面因素造成的。永磁体的物理形状和定子齿槽的存在使反电动势不是理想的正弦; 逆变器输入定子的电流含有高次谐波;电流检测漂移; 电流控制存在有相位有滞后等原因都可以产生ΔI,使输出力矩不理想。 ·齿槽效应的影响 影响数控机床伺服系统低速性能的另一个重要因素是伺服电机的齿槽效应所产生的齿槽转矩。齿槽转矩是由转子磁场和定子铁心相互作用产生。永磁同步电动机的转子是永磁体,电机的转子和定子之间的磁阻由于定子齿和槽对应的气隙不同而不同。当永磁同步电动机匀速旋转,这些齿和槽交替经过磁极,磁阻的周期性变化产生一个周期性力矩作用于电机轴,这个周期力矩就是齿槽力矩,它与电机转子磁极位置有关,是电机永磁磁场的幅值和空间位置的函数,它可以使系统产生周期性的转矩波动,影响伺服系统的低速性能。 干摩擦的影响 执行轴上的干摩擦是影响机床伺服系统低速特性的另一个不良因素。当系统在中高速运行时,摩擦力保持恒定; 在低速运行时,摩擦是电机角速度的函数,图2给出了低速时摩擦力矩与电机角速度的对应关系。
图2 摩擦力矩与电机角速度关系图 低速运行时,当电机运行速度大于ωc,摩擦力矩恒定,系统的运动是平稳的; 当电机速度变化到小于ωc大于ωb范围时,摩擦力矩变小,小于Mc,输出转矩大于负载,电机角速度增加直到ωc,力矩重新平衡,但加速度一直变化; 如果转速小于ωb摩擦力矩大于输出力矩,电机不断减速直到下一个电流采样周期。这样就导致伺服系?进行跳动式跟踪,实际系统的情况要更加复杂。
令ΔT=jDΔω/dt,则考虑ΔT时交流伺服系统简化后如图3所示。T=jDΔω/dt,则考虑ΔT时交流伺服系统简化后如图3所示。
